INTRODUCTION

Limited attention has been given to the presence of fungi in the aquatic environment compared to other microorganisms such as bacteria and viruses. Our previous research showed that fungi occur widely in drinking water sources [1,2] and identified many fungi species that have not been previously reported in the aquatic environment. Moreover, many filamentous fungi species present in water were found to be able to grow at high temperatures and have conidia measurements lower than 5 µm, being therefore considered as potential pathogenic species to humans and animals [2].

Chlorine is the most widely used disinfectant in water treatment. However, *Penicillium* and *Aspergillus* species showed a higher resistance to free and combined chlorine disinfection than certain *Cladosporium* and *Phoma* species tested [3,4] and so may resist the conventional treatment. Further research is therefore needed to address the efficiency of different disinfectants for the inactivation of fungi. The use of UV for water treatment has increased over the years since it is extremely effective for inactivating protozoans, viruses and bacteria and does not require chemical addition. This will also decrease the chlorine dose needed as a final disinfectant in the distribution system and consequently, decrease the formation of chlorination disinfection by-products.

Light-emitting diodes (LED) recently emerged as a promising treatment technology due to their advantages: mercury free lamps, no stabilization time, long lifetimes, and diversity of wavelengths available. LEDs have already been used for the inactivation of several microorganisms in real water sources but, to the best of our knowledge, they have not been tested in terms of their ability to inactivate filamentous fungi in water. The aim of this study is therefore to evaluate: (i) the inactivation efficiencies of LEDs with different wavelengths (255 nm and 265 nm) on three *Aspergillus* species (*A. fumigatus*, *A. niger* and *A. terreus*) that were isolated from drinking water sources and; (ii) the effect of these light sources on their morphology, membrane permeability and enzymatic activity.

METHODS

DISCUSSION and RESULTS

Spores and mycelium grown for 7 days at 27 °C

1x10⁶ spores/mL spiked into surface water matrix

LED 255 nm and 265 nm

0.5, 1, 5, 10, 15, 30, 45 and 60 min

LED 255 nm

LED 265 nm

A. fumigatus

A. niger

A. terreus

UV Fluence

Fungal inactivation

Growth Studies

Initial

After 3 weeks

Karnovsky’s Fixative (overnight):

- Glutaraldehyde (2.5 % v/v)
- Paraformaldehyde (2.0 % v/v)
- Phosphate saline solution (0.1 M)

Osmium tetroxide (1.0 % v/v) for 2 hours

Dehydration with 30, 50, 70, 80, 90, 95 %, 5 min and 100 %, 10 min, of ethanol

Freeze dried for 30 min

Mounting samples on carbon conductive tape

Cover samples with gold and palladium

Scan Electron Microscopy

Flow Cytometry

Membrane permeability and enzymatic activity

SEM and Flow Cytometry proved to be suitable techniques to evaluate spores’ morphology, membrane integrity and enzymatic activity

CONCLUSIONS

The LED that emits at 265 nm is more efficient to inactivate the fungi species; *A. niger* is the most resistant species.

The LED that emits at 265 nm has a higher effect on the membrane permeability and the enzymatic activity of the fungal spores

Aspergillus niger was the most resistance species which may also be due to its higher spores’ size and/or due to the presence of pigments

Phenotypic effect

The LED that emits at 265 nm has a higher effect on the fungal spores morphology, regardless the fungi species

The LED that emits at 265 nm has a higher effect on the membrane permeability and the enzymatic activity of the fungal spores

A. niger is the most resistant species followed by *A. fumigatus* and *A. terreus*

REFERENCES

Acknowledgement: Financial support from Fundação para a Ciência e a Tecnologia through the fellowship SFRHBD/111992/2015 is gratefully acknowledged. 059/Art4/2016 - USD/Ma/24/04/2013 is a program financially supported by Fundação para a Ciência e Tecnologia/Ministério do Desporto e da Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is gratefully acknowledged. The authors also thank Dr. David Baston from SYSMIX for helping with the flow cytometry analysis and SYMEXIN that kindly provided the flow cytometer used in these experiments.